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Human-in-the  loop  (HITL)  simulations  cannot  collect  enough  data  from  human
operators to validate estimates of error probabilities for task components.  Error rates for
tasks have been estimated by using laboratory data for error rates depending on variables
such  as  the  cognitive  complexity  of  the  task.  The  limited  channel  capacity  of  human
operators compels error rates to be strongly related to the time available for the task, the
speed-accuracy trade-off.  HITL simulations can provide valuable data on the time available
for the operator's tasks.  We propose that the response times be used in conjunction with
measured speed-accuracy curves to estimate the operator error rates contributing to mission
failure. Such analyses should be especially important in the estimation of error rates in off-
nominal situations.

Nomenclature
a, b = Beta distribution parameters
A = signal area
d' = signal-to-noise ratio
E = signal energy
f
0

= error probability prior distribution probability density 

f
N

= error probability posterior distribution probability density after N trials 

F = cumulative distribution function
F

0
=  error probability posterior cumulative distribution after N trials

F
N

=  error probability posterior cumulative distribution after N trials

Fn = standard normal cumulative distribution function
I = stimulus intensity level
N = number of trials
N

0
= prior distribution parameter 

n
0

= noise power density

n
c

= confidence level number = 1/(1 - p
c
 )

n
e, 0 

= prior distribution error probability limit number = 1/p
e, 0

 

n
e

= error probability number = 1/p
e
 

n
c, 0

= prior distribution error probability parameter number = 1/p
e, 0
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p
c, 0

= prior probability that p
e
 <  p

e, 0
 

P
d
  = probability of a correct discrimination

P
I

= probability of a correct identification

p
c 

= confidence level as a probability

p = discrete probability distribution function
p
e 

= error probability

p
e. 0

= prior distribution error probability limit

s = sensory noise standard deviation
s
0

= sensory pattern filtered noise standard deviation

t = stimulus duration
X = number of trials resulting in errors

I. Introduction

One possible goal of HITL simulations is to provide data to evaluate the system reliability.  Human operator
reliability might be assessed by the frequency that errors are made in the simulation.  Here we point out that even if
no errors are made, the required number of opportunities for error may be impractically large if a high level of
reliability must be insured.  We propose using the strategy used in the perceptual sciences to ensure that stimuli can
be discriminated  with high  reliability.   Measurements  are  made with stimuli  that  lead  to  a  measurable  rate  of
confusion and then the low error-rate stimuli are derived from simple models.  Most cognitive tasks involve a time-
accuracy trade-off, so that measurable accuracy can be achieved by making the available time short enough.  Part-
task simulations to measure the time-accuracy trade-off can be made more efficient through the use of sequential
designs efficiently designed to estimate model parameters.  Standard HITL simulations are then seen, not as a source
of error rates, but as a source of distributions of times available for cognitive operations, which can then be fed into
time-accuracy trade-off models to obtain error-rate estimates.

II. The error rate measurement problem
In the performance of critical tasks, system designers would like to have statistical evidence that the probability

of human error will be less than some value p
e 

 = 1/n
e
 with some level of confidence p

c  
= 1 - 1/n

c
.  For example,

n
e
 might be 100 and n

c
 might be 10.

For values of n
e
 > 10, it is shown in the Appendix that even if the HITL simulations opportunities resulted in no

errors, the number of trials needed N would be

N = n
e
 ln n

c
 = 2.3 n

e
 log n

c
. (1)

For n
e
 =100 and n

c
 = 10, we obtain N = 230.

Notice that if we want the error rate to be 10 times less, p
e 

 = 1/1000, we need 10 times as many trials, but that if

we want the confidence number to be 10 times more so that the confidence is 0.99 instead of 0.90, we only double
the number of trials needed.

The Appendix also shows that if you have the prior belief that the probability is p
c, 0 

 that the error rate is less

than p
e, 0 

, the number of error-free trials N needed to allow the belief that it is less than  p
e
 with a probability of p

c
,

is 

American Institute of Aeronautics and Astronautics
2



N
 
 = log(1 - p

e
)/ log(1 - p

e
)  - N

0 
≈ 2.3 n

e
 log n

c
 – N

0 
. (2)

where
N

0
 = log(1 – p

c, 0 
) / log(1 – p

e, 0 
)  ≈ 2.3 n

e, 0
 log n

c, 0 
, (3)

and n
e, 0

 and n
c, 0

 have the expected meanings,  n
e, 0

 = 1 /p
e
 and n

c, 0 
 =  1/(1 – p

c
). The two prior assumption 

probabilities can be regarded as providing a number of trials that do not need to be run.

III. Modeling Errors
We propose that rather than measure human error rates directly, that they be estimated using models.  Sensory

systems can be regarded as a cascade of processes, where each level contributes its own noise. 1 In the visual system
at low levels, the photon noise can be dominant, but at normal working levels the neural noise from the retinal
ganglion cells is regarded as the noise that limits performance.2-4 This is plausible since the information from 107

cones must carried to the brain on 106 nerve fibers using an inherently noisy pulse code. In the brain, resources can
be devoted to reduce further degradation. A useful model for visual discrimination errors is that the visual signals
are approximately linearly filtered in the retina and that spatio-temporal white noise is added by the ganglion cells.2

This signal is relayed to the cortex where an ideal statistical analysis is performed for the task required.5 The result
of this analysis is a single number which has variability as a result of the noise and inherently results in sensory
errors. When there are no uncertainties and the white noise is Gaussian, the ideal analysis is based on the cross
correlation of the signal  pattern in the domain where the noise is added with noisy signal.   This results in the
detectability of a signal being determined by the signal energy after the retinal filtering. 6 Signal detection theory
shows that the ideal observer performance is characterized by 

d' = √(E / n
0
), (4)

where E is the signal energy and n
0
 is the noise spectral density. In vision the signal is usually regarded as a contrast

signal decomposable into the product of a peak RMS contrast C, an energy equivalent area A, and energy equivalent
duration t.  The detectability d' relates to these variables as 

d' = C √(A t) / s
0
, (5)

where s
0
 is the standard deviation of the noise resulting from the cross correlation of the noise with the signal.5

1. Sensory errors, sensory thresholds, and JND's
When psychologists measure sensory thresholds they assume that the trial-to-trial variations in task performance

represent the effect of sensory noise.  Suppose the goal is to measure the threshold for the difference in stimulus
intensity at  intensity level  I

0
.   On each trial  two stimuli are presented,  I

0
 and  I

1
.  The probability of a correct

detection can be modeled as 
P

d
  =  Fn (I

1
 - I

0 
)/ (s √2 )), (6)

where Fn is the standard normal cumulative distribution function and s is the standard deviation of the sensory noise
on a single  presentation,  I0 or  I1.   Measurements  of discrimination are  usually reported  as  the size of  a just-
noticeable-difference (JND) in the stimulus domain.  This may be defined as the intensity difference  I1  -  I0 that

leads to 75% correct responses.  Equivalently, the experiment can be regarded as measuring  at I 0, since 

s = (I1 - I
 
0) Fn-1(0.75) / √2 = 0.477 (I1 - I

 
0). (7)

To ensure that sensory noise does not limit the discriminability of colors, for example, colors are often chosen to
be at least 10 JNDs apart.  The probability that Gaussian noise would be large enough to cross a boundary 5 standard
deviations away is about 3 x 10 -  6.    Notice that if we wanted to perform an experiment to ensure with 95%
confidence that the error rate was less than 10 - 5 we would need to make over 45,000 error-free observations.
Table1 Shows distances in JNDs using the Lab color metric for colors being considered for use in control room
displays.7
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JNDs between colors using the Lab color metric.
RGB Input Normal Color Vision

Colors R G B  Red Orange Yellow Green Cyan Purple Black White Gray

Red 255 0 0  --         

Orange 255 160 80  42 --        

Yellow 255 255 0  79 44 --       

Green 0 192 131  112 75 72 --      

Cyan 0 185 255  128 96 109 51 --     

Purple 175 0 255  115 104 138 51 69 --    

Black 0 0 0  101 92 116 79 85 91 --   

White 255 255 255  94 58 69 53 51 81 100 --  

Gray 130 130 170  94 68 92 51 36 56 61 44 --

Dark Gray 75 75 75  87 67 92 53 59 74 33 67 31

RGB Input Protanope

Colors R G B  Red Orange Yellow Green Cyan Purple Black White Gray

Red 255 0 0  --         

Orange 255 160 80  24 --        

Yellow 255 255 0  54 35 --       

Green 0 192 131  31 21 54 --      

Cyan 0 185 255  73 67 96 46 --     

Purple 175 0 255  95 94 127 46 34 --    

Black 0 0 0  60 80 113 72 83 82 --   

White 255 255 255  65 47 66 34 37 71 100 --  

Gray 130 130 170  54 53 87 32 23 42 62 43 --

Dark Gray 75 75 75  39 53 88 40 53 63 33 67 30

RGB Input Deuteranope

Colors R G B  Red Orange Yellow Green Cyan Purple Black White Gray

Red 255 0 0  --         

Orange 255 160 80  21 --        

Yellow 255 255 0  34 27 --       

Green 0 192 131  55 42 68 --      

Cyan 0 185 255  105 90 114 50 --     

Purple 175 0 255  120 108 132 50 20 --    

Black 0 0 0  88 92 118 66 82 82 --   

White 255 255 255  74 54 70 35 51 71 100 --  

Gray 130 130 170  80 68 94 26 27 40 61 45 --

Dark Gray 75 75 75  69 66 93 33 56 63 33 67 31

The goal was to find colors that were at least 30 JNDs apart for the three color types that capture the sensitivity
of  the  common  anomolous  types,  deuteranomaly  and  protananomaly.  This  distance  seems  extreme,  but  the
calibration experiments used stimuli with a diameter of 2 degrees of visual angle and the colored areas in the display
are much smaller. If the linear dimension is reduced to only 0.2 degrees of visual angle, the JND criterion would
then only be 3 JND's. One problem with trying to base the estimated sensitivity on area rather than actual ganglion
cell density is that the ganglion cell density associated with the blue cones is nearly zero in the center of the fovea,
leading to small field tritanopia, where the white and the yellow are not distinguishable.
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Another good example of modeling human error by sensory noise is the pattern vision model, which assumes
that the visual stimulus is filtered by the optics, converted to contrast in the eye and then has spatio-temporal white
noise added to it.  The detection or discrimination processing is then assumed to be ideal.  Once the filter properties
have been measured, any experiment in pattern discrimination allows estimation of the noise level.  In this model, if
a stimulus is just at threshold, it can be moved a predictable distance in JNDs from threshold by increasing the area
or the duration. The changing the duration changes the signal-to-noise according to the formula,

d' = d'
0
 √(t / t

0 
), (8)

where d' is the new signal-to-noise ratio, d'
0 

 is the original one, t is the new duration and t
0 

is the original one.  If

error rates are measured at short durations, this model of the human observer allows the prediction of sensory noise
based error rates for longer duration stimuli, rates that are too low to be actually measured.

When observers are allowed to control their own speed, this noise model allows prediction of the speed-accuracy
trade-off that results. We express the signal-to-noise ratio as

d' = d'
1
 √t, (9)

where d'
1 

is the signal-to-noise ratio for a signal duration of one second. Fig. 1 shows the results from an experiment

in letter identification.8  

Figure  1.   Letter  identification  accuracy  vs.  latency  (speed-accuracy  trade-off). Square  symbols  indicate
conditions run in first group of 5 blocks.  Circles indicate second group of 5 blocks.  Colors indicate the contrast in
percent.  Error bars are 95% confidence intervals based on the observer x treatment interaction. Red lines show
constant performance curves for our speed-accuracy trade-off model. The parameter B is the parameter d'

1
 in the

text, the signal-to-noise ratio at a latency of one second.

Under the simplifying assumption that the differences among the 12 letters are orthogonal stimuli,  a signal-to-noise
ratio of d' should lead to a probability of a correct identification P

I
 approximately given by

P
I
 = Fn

 
(0.87 d'  – 1.38), (10)
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where  Fn is the cumulative standard normal distribution and the constants are from Elliott.9 There is a striking
difference between the latencies (speed) for the positive contrast conditions (light colored symbols) depending on
whether they were first (squares) or second (circles).  The model suggests that although the student subjects seemed
to be more in a hurry to leave in the second session, they were  actually performing slightly better  despite the
proportion of correct responses being slightly lower.

2. Cognitive errors
Speed-accuracy trade-off experiments in cognitive decision making have used this same basic model, assuming

that the subject is accumulating noisy information over time.10

Conclusion
Human-in-the loop (HITL) simulations cannot collect enough data to validate estimates of error probabilities for

task components by human operators.  Error rates for tasks have been estimated by using laboratory data for error
rates depending on variables such as the cognitive complexity of the task. The limited channel capacity of human
operators compels error rates to be strongly related to the time available for the task, the speed-accuracy trade-off.
HITL simulations can provide valuable data on the time available for the operator's tasks.  We propose that the times
be used in conjunction with measured or theoretical  speed-accuracy curves to estimate the operator  error  rates
contributing to mission failure. Such analyses should be especially important in the estimation of error rates in off-
nominal situations.

Appendix
If an experiment provides N independent and equally probable opportunities for an error, the probability that there
will be X errors in N trials when the probability on a single trial is p

e
, is given by the binomial distribution

p( X; N, p
e 

) = (N!/(X! (N-X)!) p
e 

X (1 - p
e 

) N – X . (A1)

The upper limit of the one sided confidence interval for p
e
 with confidence level p

c
 is given by the smallest value of

p
e
 that can be rejected by the experiment at a significance level of 1-p

c
. The cumulative distribution of X, F(X; N,

p
e
) is the probability that no more than X errors will occur, 

F( X; N,  p
e 

) = ∑
x=0

X

p ( x ; N , pe )  . (A2)

The confidence limit is thus given by the value p
e
 such that

F( X; N, p
e 

) = 1 - p
c 

. (A3)

Since  the  binomial  distribution  functions  are  readily  available,  it  is  straightforward  to  solve  this  equation
numerically.

In the case that no errors are observed and  X = 0, 

F( 0; N,  p
e 

) = p( 0; N,  p
e 

) = (1 - p
e 

) 
N

, (A4)

and the confidence limit occurs when

1 - p
c 

 = (1 - p
e 

) 
N

. (A5)
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Solving for p
e
, we obtain

 p
e 

 = 1 - (1 - p
c 

) 
1/N

 (A6)

If we have desired values for p
c 

and p
e
, we can solve for N

N = log(1 - p
c 

) / log(1 - p
e 

). (A7)

For small p
e 

, 

log(1 - p
e  

) = ln(10) ln(1 - p
e 

) ≈ - ln(10) , (A8)

so

N = - ln(10) log(1 - p
c 

) / p
e   

= 2.3 n
e
 log(n

c 
), (A9)

where n
e
 = 1/p

e 
 and n

c 
= 1/(1 - p

c 
).

If we want to be 99% confident (n = 100) that the error rate is less than 0.01 (n
e 

=
 
100), we find that the number

of observations N must be 459 by the exact formula or  2.3 x 2 x 100 = 460, by the approximation. Note that this
number is not very sensitive to the confidence level, because of the log, but gets large quickly if the error probability
must be very small, i.e. if we want to know that the operator is very reliable.

With a Bayesian approach, the result is simplified if the priori distribution is chosen to be the Beta distribution.
In general, if the prior distribution of p

e 
is Beta with parameters a and b, the posterior distribution after a binomial

experiment with X errors in N trials will be Beta with parameters a +X and b + (N-X).

If p
e 

 is known to be small, it is convenient to  choose prior distribution parameters a = 1 and b = N
0 

, so that

f
0 

(p
e 

) = N
0
 (1 - p

e 
)N 0  - 1 . (A10)

This distribution has a mean of  1/(N
0 

+1) and a standard deviation of  1/((N
0 

+1) √(1+2/N
0
).

The cumulative distribution is
F

0 
(p

e 
) = 1 – (1 - p

e 
) N 0 (A11)

If our prior knowledge is that we think that the probability is p
c, 0

 that p
e 

 is less than p
e, 0

, 

then we need to choose N
0
 so that

p
c, 0

 = 1 – (1 – p
e, 0 

) N 0
 
, (A12)

which is
N

0
 = log(1 – p

c, 0
) / log(1 - p

e, 0 
)  ≈ 2.3 n

e, 0
 log(n

c, 0 
). (A13)

When  the  experimental  result  of  no  errors  in N  trials  is  used  to  update  this  prior,  the  resulting  posterior
distribution has the same form with N

0
 replaced by N

0 
+

 
N,

f
N 

(p
e 

) = (N
0 

+N) (1 - p
e 

) N 0+N
   

. (A14)

The cumulative posterior distribution is given by
F

N 
(p

e 
) = 1- (1 - p

e 
) N 0+N

 
. (A15)

The value of N that ensures that the probability is p
c, N 

that p
e
 is less than p

e, N 
, satisfies

N + N
0 

 = log(1 – p
c, N

) / log(1 – p
e,N 

)  ≈ 2.3 n
e, N

 log(n
c, N 

). (A16)
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The quality of the approximation is shown computing the proportional error
e =  (ln (1 – 1/N) – N)/N. (A17)

For N = 11, e = 0.0087; and for N = 100, e = 0.00010.
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